Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel.

نویسندگان

  • F S Tsung
  • Ritesh Narang
  • W B Mori
  • C Joshi
  • R A Fonseca
  • L O Silva
چکیده

The first three-dimensional, particle-in-cell (PIC) simulations of laser-wakefield acceleration of self-injected electrons in a 0.84 cm long plasma channel are reported. The frequency evolution of the initially 50 fs (FWHM) long laser pulse by photon interaction with the wake followed by plasma dispersion enhances the wake which eventually leads to self-injection of electrons from the channel wall. This first bunch of electrons remains spatially highly localized. Its phase space rotation due to slippage with respect to the wake leads to a monoenergetic bunch of electrons with a central energy of 0.26 GeV after 0.55 cm propagation. At later times, spatial bunching of the laser enhances the acceleration of a second bunch of electrons to energies up to 0.84 GeV before the laser pulse intensity is significantly reduced.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laser wakefield acceleration by petawatt ultra-short laser pulses

An ultra-short (about 30 fs) petawatt laser pulse focused with a wide focal spot (about 100 μm) in a rarefied plasma (n0 ∼ 10 cm) excites a nonlinear plasma wakefield which can accelerate injected electrons up to the GeV energy without any pulse channelling. In these conditions, propagation of the laser pulse with an over-critical power for relativistic self-focusing is almost the same as in va...

متن کامل

Demonstration of a narrow energy spread, ∼0.5  GeV electron beam from a two-stage laser wakefield accelerator.

Laser wakefield acceleration of electrons holds great promise for producing ultracompact stages of GeV scale, high-quality electron beams for applications such as x-ray free electron lasers and high-energy colliders. Ultrahigh intensity laser pulses can be self-guided by relativistic plasma waves (the wake) over tens of vacuum diffraction lengths, to give >1  GeV energy in centimeter-scale low ...

متن کامل

شبیه‌سازی ذره‌ای شتاب دادن الکترون‌ها در پلاسمای کم چگال

One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...

متن کامل

GeV electron beams from a centimeter-scale channel guided laser wakefield accelerator

Laser wakefield accelerators can produce electric fields of order 10–100 GV/m, suitable for acceleration of electrons to relativistic energies. The wakefields are excited by a relativistically intense laser pulse propagating through a plasma and have a phase velocity determined by the group velocity of the light pulse. Two important effects that can limit the acceleration distance and hence the...

متن کامل

LASER DRIVEN ELECTRON ACCELERATION TO GeV ENERGIES IN PLASMA CHANNELS

This paper presents a brief discussion of ultra-short laser pulse propagation and laser wakefield acceleration in plasma channels. An envelope equation for the perturbed laser beam radius is given, including finite-pulse length and nonlinear effects. Angular distribution of electrons generated by the process of laser ionization and ponderomotive acceleration (LIPA) is also discussed. An example...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 93 18  شماره 

صفحات  -

تاریخ انتشار 2004